skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Xian-He"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sparse matrix-matrix multiplication (SpMM) is a critical computational kernel in numerous scientific and machine learning applications. SpMM involves massive irregular memory accesses and poses great challenges to conventional cache-based computer architectures. Recently dedicated SpMM accelerators have been proposed to enhance SpMM performance. However, current SpMM accelerators still face challenges in adapting to varied sparse patterns, fully exploiting inherent parallelism, and optimizing cache performance. To address these issues, we introduce ACES, a novel SpMM accelerator in this study. First, ACES features an adaptive execution flow that dynamically adjusts to diverse sparse patterns. The adaptive execution flow balances parallel computing efficiency and data reuse. Second, ACES incorporates locality-concurrency co-optimizations within the global cache. ACES utilizes a concurrency-aware cache management policy, which considers data locality and concurrency for optimal replacement decisions. Additionally, the integration of a non-blocking buffer with the global cache enhances concurrency and reduces computational stalls. Third, the hardware architecture of ACES is designed to integrate all innovations. The architecture ensures efficient support across the adaptive execution flow, advanced cache optimizations, and fine-grained parallel processing. Our performance evaluation demonstrates that ACES significantly outperforms existing solutions, providing a 2.1× speedup and marking a substantial advancement in SpMM acceleration. 
    more » « less
  2. Cache management is a critical aspect of computer architecture, encompassing techniques such as cache replacement, bypassing, and prefetching. Existing research has often focused on individual techniques, overlooking the potential benefits of joint optimization. Moreover, many of these approaches rely on static and intuition-driven policies, limiting their performance under complex and dynamic workloads. To address these challenges, this paper introduces CHROME, a novel concurrencyaware cache management framework. CHROME takes a holistic approach by seamlessly integrating intelligent cache replacement and bypassing with pattern-based prefetching. By leveraging online reinforcement learning, CHROME dynamically adapts cache decisions based on multiple program features and applies a reward for each decision that considers the accuracy of the action and the system-level feedback information. Our performance evaluation demonstrates that CHROME outperforms current state-of-the-art schemes, exhibiting significant improvements in cache management. Notably, CHROME achieves a remarkable performance boost of up to 13.7% over the traditional LRU method in multi-core systems with only modest overhead. 
    more » « less
  3. Memory system is critical to architecture design which can significantly impact application performance. Concurrent Average Memory Access Time (C-AMAT) is a model for analyzing and optimizing memory system performance using a recursive definition of the memory access latency along the memory hierarchy. The original C-AMAT model, however, does not provide the necessary granularity and flexibility for handling modern memory architectures with heterogeneous memory technologies and diverse system topology. We propose to augment C-AMAT to take into consideration the idiosyncrasies of individual cache/memory components as well as their topological arrangement in the memory architecture design. Through trace-based simulation, we validate the augmented model and examine the memory system performance with insight unavailable using the original C-AMAT model. 
    more » « less
  4. Free, publicly-accessible full text available September 2, 2026